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Nonadditivity of the exchange repulsion for three neon atoms in the 
equilateral triangle configuration has been calculated in the first-order of 
the symmetry adapted perturbation theory. The relative nonadditive con- 
tribution to the first-order interaction energy has been found to be about 
twice as small as in the helium trimer. The many-orbital cluster partition of 
the exchange nonadditivity has been derived. It has been found that in the 
region of the van der Waals minimum about 95% of the exchange nonad- 
ditivity originates from the interaction of the L-shell electrons only. The 
five-orbital terms as well as terms of an order-higher than S 3 have been 
found to be negligible. Approximate formulae for evaluation of the ex- 
change repulsion nonadditivity has been proposed and discussed. 
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1. Introduction 

The three-body interactions proved to be important in determining various 
properties of noble gases, as the ground state energy of trimers [1], third virial 
coefficients [2, 3], elastic constants of solids [2, 4]. 

The total three-body effect can be, by means of symmetry adapted perturba- 
tion theory, decomposed into well defined contributions which have clear 
physical interpretation and can be examined separately [5]. The results for 
model systems, H 3 [6, 7] and He3 [8] suggest that for noble gas trimers the 
most important three-body effects are: the short-range nonadditivity of the 
first-order exchange interaction and the long-range nonadditivity of the third- 
order dispersion interaction. For the equilateral triangle configuration the 
former effect is attractive and dominates at the interatomic distances smaller 
than R ~ -  the distance of the van der Waals minimum in the interaction of a 
pair of atoms. The latter one is repulsive and dominates at the distances greater 
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than R~. For separations close to R~ both effects are of comparable mag- 
nitude. The third-order dispersion nonadditivity may be reliably represented 
with the aid of the van der Waals coefficients. Even for large atoms they can be 
calculated quite accurately using semiempirical methods [9]. On the contrary, 
the nonadditive exchange effects can be obtained only from ab initio quantum 
mechanical calculations. As a consequence, our knowledge of the actual 
magnitude of these effects in the van der Waals minimum region is limited to a 
few simplest systems [6-8, 10, 11]. 

To take into account the nonadditive exchange effect the supermolecular SCF 
treatment employing the counterpoise method [12] might be considered as the 
most useful in practical calculations for noble gases [13, 14]. This is because 
the SCF method allows not only for the first-order nonadditive effects, but for 
the induction and exchange-induction nonadditivities of the second and higher 
orders as well. The latter effects proved to be of crucial importance in the case 
of Be3 system [11]. However, this is not the case for aggregates of noble gas 
atoms [8, 14] because of their hard-to-deform spherical distribution of the 
electronic charge. Moreover, calculations in the framework of the super- 
molecular SCF approach become very time-consuming and inaccurate for 
larger systems. One should remember that, since the nonadditive component of 
the interaction energy is small and is obtained as a difference of much larger 
numbers, the error may be larger than the effect itself. Taking all these into 
account it is advantageous in the case of rare gas atoms to evaluate the 
three-body exchange effect directly, using the perturbation expression for the 
first-order energy [8]. The important merit of this approach is the possibility of 
introducing for larger systems well defined and easy to verify approximations 
[10]. Furthermore the knowledge of the first-order three-body nonadditivity 
allows us to check and interpret supermolecular variational results (if available) 
as well as approximate model calculations [15, 16]. 

It has been demonstrated in [5] that the leading term of the three-body 
nonadditivity of the first-order exchange repulsion is, for an aggregate of 
neutral atoms, of order S 3 where S denotes the interatomic overlap integral. In 
this paper we derive an explicit formula for this leading contribution assuming 
the wave functions of isolated atoms in the form of single determinants. The 
result is written in the form of a many-orbital cluster expansion which proved 
to be very convenient for calculations of the exchange effects [17, 18]. The 
advantages of the many-orbital expansion are: clear physical interpretation of 
the various exchange contributions and possibility of introducing approximate 
formulae arising if one neglects some of the many-orbital terms and calculates 
approximately the other ones. 

The derived formula as well as the exact expression of Ref. [8] have been used 
to calculate the three-body exchange nonadditivity for the equilateral triangle 
configuration of Ne 3 at the interatomic separations ranging from 3 a.u. to 7 a.u. 
and assuming Hartree-Fock wave function for the neon atom. The Ne 3 system 
is the simplest one composed of many-electron and many-shell atoms, which, 
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in contrast to beryllium atoms, have hard-to-deform spherical distribution of 
charge. Previous SCF calculations of the nonadditive effect in Ne3 [19] have 
been limited to very short interatomic distances up to 3.2 a.u., thereby give no 
information for the physically significant distance of nearest neighbours in the 
neon crystal [2]. This distance is close to Rm and equals approximately 5.8 a.u. 
[2]. 

We have performed many-orbital and many-shell analysis of the results and the 
above mentioned approximate expressions are proposed and discussed. A 
comparison of the first-order three-body effect with two-body one as well as 
with the Axilrod-Teller triple-dipole energy has been also made for H3, He3 
and Ne3~ 

2. Nonadditivity of the First-Order Exchange Repulsion and Many-Orbital 
Cluster Expansion Thereof 

The first-order energy for three interacting closed-shell systems in the sym- 
metry adapted perturbation theory is defined as 

i m  (OA(IDB(ID C lSg I OAOBOC ) (1) 

where ~ is the antisymmetrizer for all electrons of complex ABC, (I)A, OB, (I)c 
denote the determinantal wave functions of the systems A, B, C-respectively,  
and V is the operator of intermolecular interaction, which may be conveniently 
written in the form 

V= V AB + V Bc + V cA 

where 

(2) 

v A"-- Y, DA"(st) (3) 
s e A  t ~ B  

and vAB(st) is a generalized two-electron potential [17]. For the interaction of 
neutral atoms it is defined as 

D A B ( s t )  = --1 --1 --1 -- RAB - r A t  - -  r B s  -}- r s t  I (4) 

where RAB is the internuclear separation and rat, rm and rs, are distances 
between the nuclei and electrons specified by the subscripts A, B, s and t. 

The first-order interaction energy (1) can be separated into Coulomb and 
exchange contributions 

E (1) + E (1) int = O ~xc~ (5) 

where Q = ((I)AOBeI)c[ V ]OACI)B~C) and the exchange contribution is defined as 
the difference --1.twm-Q. One can easily show that the Coulomb energy is 
pair-wise additive and that the exchange contribution ~oh~=(~) can be decomposed 
into two- and three-body parts, ~ex~h~'-,~(a) to 3) and "~ex~h~J,w(a) ta 3), respectively, which 
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are defined as follows 

E ( * ) •  2 3 1~'(1) 4- . . . .  ( , ) =  lim ~ c h - -  lim 
RCA, RBC---~or ~t~ AB, R CA---> ct~ 

and 

E(1) ~,q 3) ~(~). (1) ~x:hW, = ~" . . . .  -- E:~ch(2, 3) 

E ( 1 )  ~ ~_ IEY(1) . . . .  lim (6) ~ ' e x c h  
R AB,RBc--->~ 

(7) 

For the neutral atoms the first non-vanishing contribution to the three-body 
nonadditivity of the exchange energy is of the third-order in the interatomic 
overlap integrals [5]. To  define explicitly this contribution one should extract 
f rom M in Eq. (1) the operators  interchanging coordinates of electrons among 
the interacting systems and classify them with respect to powers of S, using 
arguments similar to those of Ref. [20]. Then, the two-body contributions and 
terms of order higher than S 3 can be removed and the result may be written as 
follows 

ECx~h(3, 3) = ~'~xCh ,~, 3) + E~h (3, 3 ) -  s-.,exch k J ,  (8) 

where 

EAB(C)(3 3) = (OA~aqbcl vAB(Q AB(C)- (QAB(C))) ](I)At~BCI)C > exch ~, , ," 

The opera tor  QAB(C) is defined: 

QAB(C) = ~AC ..~ ~BC ~_ ~ABC ~_ ~BCA 

(9) 

(lo) 

~ A C = - -  2 2 P s r  
s ~ A  r a C  

and 

(11) 

2 2 a,P,r (12) 
seA tcB rcsC 

where Ps, interchanges the coordinates of sth and rth electrons and (Qga(c)) is 
calculated with qbA~Bd0C. 

It  is seen f rom Eqs. (9)-(12) that "~exch~AB(C) may be regarded as a modification of 
the two-body interaction between A and B caused by the effect of exchanging 
electrons with C atom. We notice that to obtain this term it is sufficient to 
consider the operators  interchanging at most  one electron of each centre at a 
time. From this point of view Eexch(3, 3) may be envisaged as arising f rom 
single-electron exchanges only. 

It  is simple to evaluate formula (9) for one and two-electron systems; for larger 
systems, however,  the algebra becomes tedious and involved. In a general case, 
it seems easier to express the total E(1)i,t in terms of orbitals [8] and, after 
expanding it in powers of S, to extract the three-body terms of order S 3. The 
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result can be written in the form of a many-orbital cluster expansion 

EA~h(C'(3,3) = 2 ~ 2 e~ B(c) 
i~A ]cB m~C 

+ 2 ~ ~ e AAB(C)-I- ~ 
Vik]m - -  2 2 2 e i]lm -[- 2 ~ 2 e aABB(C)ik]lm ( 1  3) 

i , k ~ A  j~B m~C i~Ai.I~Bm~C i,k~A j,l~B m~C 
i<k j < l  i<k ]<l  

_AAB(C) indicates that the corresponding where, for instance, the symbol e~k>~ 
four-orbital contribution depends only on the ith and kth orbitals of sys- 
tem A, j th orbital of system B and ruth orbital of system C. The contributions 

AABtC) oABBtC) and ~AASB(C) e~kim , ~it.~ ~kjt,~ are defined to be symmetric with respect to the 
interchange of indices i and k or l and j, and can be obtained by s symmetri- 

_~MB(C) zABB(C) and .~AABB(C), zation of the "primitive" quantities: aikim , aiil,- ~kjl.~ �9 

~AAB(C) __ ~AAB(C)3- u. AAB(C) (14) 
ik]m - -  C'ik]m - -  c'ki]m 

o r  

EAABB(C) .~AABB(C) 3- u. AABB(C) 3- u. AABB(C) u. AABB(C) (15) 
ikj lm = ~ ikjlrn - -  C" kijlm - -  c" ikl]m ~- 'Z kiljm 

The explicit expressions for the many-orbital contributions to Eexch(3 , 3) are as 
follows: 

bc ca ac cb gi]m-aB(C) ---- 2(a~a,I v~2 la, b,)Sj~S,, ,+ 2(a~b,I v~2 Ibjbj)SimS~, 
ab bc ca +4(a,b,[ v~2 ]a,b,)S,, SjraSmi 

+ 2(a~b,] v~2(1 - 2P~2)Cma,)S,~ 

+ 2(a,bj] via(1 - 2P~z)bic,,)Sa 
ab bc - 2( aibjl '012 Ic,~bj)S~, Sjm 
ac ba - 2(a~b,I v,2 l a,cm)S~Sj~ (16) 

bc ca bc ca k,=AAB(C)ikjm ---- 4(aiakl "012 laibj}S#nSmk-- 2(akai] "012 laibi)SjmSmk 
bc ab ca ~ b c  ~ a c  ~ b a ]  +2(a~bi] v12 lakb,)[S,~S~ i S~.k + oi~.o~moikj 

- 2(a,b,I '012 lakc.JS*a~S,~ (17) 

~AABB(C) ~- 2(aib~ I ~b b~ ~a r 1 6 2  
Eik]l m I)12 lamb,)[&, S,~Sm~ + ~.im~'m,o,k . (18) 

where the occupied orbitals of systems A. B, C are denoted by a~, ak, b# b~ and 
~ABB(C) ~b--(ai]b,), v~b(12) and the expression for e ~  can c,, respectively, S~, - "012 = 

be obtained from Eq. (17) by substituting b~ for ak, "02~ for "012 and interchang- 
ing ai and b# 

It is important to stress that the many-orbital cluster expansion given by Eq. 
(13) enables us to express E~oh(3, 3) also in terms of shells or other subgroups 
of orbitals. Moreover,  a clear physical interpretation may be associated with 
particular terms in Eq. (13). For example the sum of three-orbital contributions 

AB(C) ~ BC(A) CA(B) to E~o~(3, 3) for a given i, j, m: ~rn e~i  , + ~ + is identical with the 
expression for EexCh(3, 3) in the interaction of three helium-like systems. 
Therefore  the above three-orbital contribution to Eex~h(3 , 3) can be interpreted 
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as a result of three-body nonadditive exchange interactions among orbitals: at 
of A, bj of B and cm of C. The higher many-orbi ta l  terms have a similar 

o AAB(C) -.1- o AAC(B) interpretation. For instance, the sum: o,kj,~ -o~k,,j , is identical with the 
expression for that part  of Eexch(3, 3) which, for the system composed of 
beryllium-like a tom and two helium-like atoms, is not due to the three-orbital  
interactions. It  may be thus considered as resulting f rom the four-orbital  ones: 
a ,  ak of beryllium, bj of helium B and c,, of helium C. 

Finally, we would like to comment  on the terms formally of order S 2 which are 
present  in Eq. (16) (the second component  of the fourth and fifth terms). It  is 
easy to show, by using the Mullikan approximation and the multipole expan- 
sion of the vAB(st) potential,  that for neutral atoms the S 2 component  of one- 
and two-electron integrals cancel each other and that the leading contribution 
is of the order S 3. Similarly, the expression for cgaAB(C)ilkm lacks the term formally 
of order $2: 4(chbkl v121a~bk)S,~S~3 that can be similarly proved to be  of 
order S 4. This fact was disregarded by Williams, Schaad and Murrell  [21] who 
used solely the discussed above S 2 terms to approximate  ~(1)~xCht.,ta, 3). In fact 
these terms give incorrect sign of the first-order three-body nonadditivity of 
rare-gas trimers as may be proved by explicit calculations of the relevant 
integrals (see Ref. [22] and Sec. 3). It  should be stressed however,  that for ions 
or molecules the cancellation of S 2 contributions does not occur and the terms 
discussed above  dominate  the three-body nonadditivity [23]. 

3. Numerical Calculations of the Three-Body Exchange Effect in the Neon 
Trimer 

The calculations of the first-order three-body nonadditivity and of its compon-  
ents have been per formed for the equilateral triangle configuration of Ne 3. We 
have used (4/4/4) and (6/8/8) Gaussian representat ions (see Ref. [18]) of 
Clementi 's  SCF orbitals for the neon a tom [24]. The values of ~exchW,~(1) r 3) 
obtained with both wave functions, for interatomic distances ranging f rom 3 
a.u. to 7 a.u., are displayed in Table 1. The results obtained with the (6/8/8) 

Table 1. A comparison of the values of the first-order nonadditivity E(~ch(3, 3) obtained with 
various Gaussian representations of Clementi's SCF orbitals [24] for the Ne 3 system in the 
equilateral triangle configuration. The energy and the interatomie distance R are expressed in 
atomic units 

R (4/4/4) (6/8/8) E(1)(3, 3) - E,xoh(3, 3)" S 2 terms a 

3.0 -2.0863 (-2) -2.1550 (-2) +2.51 (-3) +1.2438 (-2) 
4.0 -7.2587 (-4) -6.9699 (-4) +2.08 (-5) +3.1412 (-4) 
5.0 -2.4516 (-5) -2.0568 (-5) -5.85 (-8) +7.3939 (-6) 
5.5 -4.0276 (-6) -3.5145 (-6) -2.77 (-8) +1.1399 (-6) 
6.0 -6.3237 (-7) -5.9505 (-7) -5.82 (-9) +1.7484 (-7) 
7.0 -1.6445 (-8) -1.6658 (-8) -1.62 (-10) +4.0755 (-9) 

a Results obtained with the (6/8/8) function. 
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wave function may be considered, on the basis of the two-body energy 
calculations for Ne2 [18], as accurate within a few percent. From the practical 
point of view it is also important to point that the rather poor  (4/4/4) fit gives a 
reasonable estimation of ,~exchW,~(1) ca 3) within considered region. 

To visualize the role of terms of order higher than S 3 we have listed the 
difference ~exchk--',]ff?(1)/'-~ 3 ) -  Ee•162 , 3) in the last but one column of Table 1. One 
can see that this effect is negligible in the region 4-7 a.u. accounting for from 
+3% to 1% of (1) 

- -  NexCh(3, 3). At  R = 3 a.u., however, its contribution increases 
to +11%.  This indicates that the expansion in powers of S is no longer useful 
at this and smaller distances. In addition, for R<~3 a.u. the neglect of 
induction-type effects is not justified [14]. 

In the last column of Table 1 the contribution from all the terms formally of 
order  S 2, discussed in Sec. 2, is also reported. We see that its sign differs from 
that of ~xchtO,~(x) ~ 3) within the region under consideration. 

In Table 2 we report  the multi-shell partitioning of Eex~U(3, 3). The notation is 
a direct generalization of that adopted in Ref. [18]. The inter-shell contribu- 
tions not listed in Table 2 are less than 0.01% of ~o)  (~ 3). The results show ~ e x c h \  ~ ,  

Table 2. A comparison of the largest individual inter-shell contributions to the first-order 
nonadditivity for the Ne 3 system in equilateral triangle configuration (for the (6/8/8) wave 
function). The interatomic distance R is expressed in atomic units, all other quantities in percent 

R E A B L C / E e x c h ( 3  , 3) AABC E K L L L / E e x c h ( 3 ,  3) ABC EKLL /E~xch(3, 3) 

4.0 94.73 4.91 0.72 
5.0 96.04 3.43 0.53 
5.5 96.64 2.92 0.44 
6.0 97.12 2.51 0.37 
7.0 97.79 1.92 0.29 

that, for all the distances considered, the first-order nonadditivity can be 
approximated with the accuracy greater than 94% by the interaction of outer 
shells only. Inclusion of K L - L - L  type terms (analogous to K L - L  in Ne2) 
leads to 99% accuracy. An orbital analysis of the predominant many-shell 
contributions seems to be also of interest. The ~AB(C) ~ L L L  term can be separated 
into components originating from three-, four- and five-orbital contributions: 

EAB(C) _ EA~[C)(3). ~AB(C)/A~. ~AB(C)I~ (19) 
L L L  - -  L . L L  L V"Vj . a - ~ L L  L k J ]  

] ~ A A B ( C )  In the same way we can decompose the second largest term - - ~ K L L L  

EAAB(C) __ I~AAB(C)/A] • L~AAB(C)/~] (20) 
K L L L  - -  ~ " K L L L  k-r]  T J ~ K L L L  \ ~ ]  

]E?AB(C) and ~TAAB(C) have been corn- The contributions of particular terms to ~ L L L  ~ : L C L  

pared in Table 3. On the basis of the many-orbital  analysis of the two-body 
AB E L L  term (see Table 5 of Ref. [18]) one can expect that the largest contribu- 

~AB(C) would result from the four-orbital  interactions and that the tion to ~Lr~L 
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Table 3. A comparison of many-orbital contributions to the nonadditive interaction of L-shells as 
well as two L-shells with K L  shells (for the (6/8/8) wave function) for the Ne 3 system in the 
equilateral triangle configuration. The interatomic distance R is expressed in atomic units, all other 
quantities are multiplied by 10 2 

R 4.0 5.0 5.5 6.0 7.0 

E L L L ( 3 ) / E A ~  c --55.10 --39.25 --32.74 --27.12 --17.73 
E L L L ( 4 ) / E A ~  c 158.74 141.05 134.05 128.09 118.29 
ELL L ( 5 ) / E ~ L  B c  - -  3.64 - 1.80 - 1.31 - 0.97 -0.56 

AABC EKLLL(4)/EKLLL 100.62 100.39 100.32 100.27 100.19 
AABC EKLr.L(5) /EKLLr " --0.62 --0.39 --0.32 --0.27 --0.19 

five-orbital terms would be negligible. This supposition is entirely confirmed by 
the results of Table 3. However, the relative role of three- and four-orbital 
terms is different as compared to the relative role of two- and three-orbital 

IKTAB(C) contributions for Ne2: ~LLLr:AB(C)ta~-~: is from 1.6 tO 1.2 times greater than ~LLL 
itself and cannot provide us a useful approximation of the latter. Moreover, 

r~Aa(C)r We notice that the role of .t-,LL L]LTAB(C)/~I]kJ] is of the opposite sign to ~ L L L  \~J" 
1ETAAB(C) EABL(C)(3) rapidly decreases with increasing R. A similar analysis of the ~KLLL 

contribution (the two last rows of Table 3) shows, that only the four-orbital 
terms are needed to reproduce it accurately. 

In Ref. [18] it was shown that the two-body contribution AB ELL may be quite 
accurately represented by the sum of three largest three-orbital components. 
We have tried to generalize the respective approximate formula (16) of Ref. 
[18]. The third atom C has been fixed on the x-axis (see Fig. 1) going through 
the midpoint of A - B  separation. Next we have replaced in Eq. (16) of Ref. 
[18] the three-orbital components by the four-orbital ones and at the centre C 
we have situated the 2px orbital, which is supposed to give the largest overlap 
with orbitals at A and B centres. The resulting approximate formula for the 

X 

/ 
/ 

/ 
/ 

\ 
\ 

\ 
\ 

Fig. 1. 
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Table 4. A comparison of various four-orbital contributions to the first-order nonadditive interac- 
tion of L shells and to the three-body nonadditive energy-E~ch(3, 3) in equilateral triangle 
configuration (for the (6/8/8) wave function). The interatomic distance R is expressed in atomic 
units, all other quantities in percent 

R 4.0 5.0 5.5 6.0 7.0 

2 AAB(C)' lc~AB(C) 34.68 37.56 38.48 39.08 39.56 Ezszx I ~ L L L  
AaB(C>~AB(C~ 21.16 20.92 20.40 19.70 18.06 Exszx [ ~ L L L  
AAB(C),~AB(C) 13.50 15.86 16.94 17.86 19.38 E xzzx I ~  LLL 
AAB(C)t 1:7 AB(C) 18.56 18.60 18.24 17.72 16.38 E yszx I ~  LLL 
AAB(C)qETAB(C) 12.12 14.54 15.68 16.68 18.34 Eyzzx I ~ L L L  

EAB(C) (A3 II~'AB(C) 100.02 107.48 109.74 110.04 112.26 approxk~]l~LgL 
AB(C) (1) 3Ea~ro~(4)/E (3, 3) 96.34 102.94 105.19 106.80 108.19 

A B  side of Ne3 triangle may  be writ ten in the form: 

~approx]ffTAB(C) __-- Ll ,  E z s z x ~ Z  AAB(C)  "Jr- ~'xszx- AAB(C)  T• exzzx~ AAB(C)  -~- eyszx~ AAB(C)  TA- EyZZX-- AAB(C)~] (21) 

where  s, x, y, z deno te  2s, 2px, 2py, 2pz orbitals, respectively. The  relative 
r:AB(C) f rom individual terms in Eq.  (21) have been  compared  contr ibut ions  to ~ c L c  

in Table  4. In the last row of this table we have domons t r a t ed  the usefulness of 
the formula  (21) to est imate the th ree -body  exchange nonaddit ivi ty.  The  
results are e n c o u r a g i n g - t h e  resulting er ror  is less than 8% in the region 
considered.  It is, however ,  impor tan t  to r emark  that  this result is due to the 
cancellat ion of some of four-orbi ta l  terms with the three-orbi ta l  ones and not  
to the smallness of  the latter (cf Table  3). 

Concluding the discussion of this section we see that  for  the equilateral  triangle 
configurat ion it is possible to in t roduce various simplifications in the evaluat ion 
of the th ree -body  nonaddi t ivi ty  of the f irst-order energy:  

1. Neglect  of  terms of  order  higher  than S 3. 
2. Neglect  of contr ibut ions f rom inner-shell  orbitals. 
3. Neglect  of five-orbital contributions.  
4. Use  of approximate  algori thms of the type of Eq. (21). 
5. Calculat ion of some less impor tan t  terms using poore r  representa t ions  of 

H a r t r e e - F o c k  orbitals. 

The  above  approximat ions  can substantially simplify the evaluat ion of the 
t h ree -body  exchange effects for clusters of larger rare gas atoms. The  work  in 
this direct ion is in progress in our  laboratory.  

4. Exchange Nonadditivity versus Two-Body First-Order Energy and Triple- 
Dipole Effect. Comparison of H3, He3 and Ne3 

In  Table  5 we have collected the values of the relative nonaddi t ivi ty  E 3 = 
(1) (1) E~xoh(3, 3)IE (2, 3) for  the equilateral  triangle configurat ion of H3, H e  3 and 

Ne  3. It  is seen that  for  the distances cor responding  to the van der  Waals  
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Table 5. A comparison of the values of the relative nonadditivity 
e3, for hydrogen, helium and neon trimers in equilateral triangle 
configuration. The interatomic distance R is expressed in atomic 
units, e 3 in percent 

R e3(H3)" e3(He3) c e3(Ne3) a 

3.0 -20.53 -10.39 -5.34 
4.0 -14.53 -4.38 -2.72 
5.0 -8.99 -1.61 -0.90 
5.5 - -  - -  -0.51 
6.0 -5.03 -0.55 -0.29 
7.0 -2.62 -0.19 -0.09 
8.0 -1.29 b 

10.0 -0.25 b 

"Ref. [6]. b Ref. [7]. c Ref. [8]. d Present work. 

m i n i m a  e 3 fo r  N e  3 is less t h a n  1 %  a n d  is tw ice  a n d  t h r i c e  as sma l l  as fo r  H e  3 

a n d  H 3 r e s p e c t i v e l y .  O u r  resu l t s  c o n f i r m  t h e  p r e d i c t i o n  of  L e g  [25]  b a s e d  on  

t h e  e f f ec t i ve  e l e c t r o n  m o d e l  [15]. 

In  o r d e r  to  e s t i m a t e  t h e  ac tua l  m a g n i t u d e  of  t he  t o t a l  t h r e e - b o d y  n o n a d d i t i v i t y  

fo r  t h e  a b o v e  t r i m e r s  we  h a v e  c o m p a r e d  in T a b l e  6 t he  v a l u e s  of  ~exch\--',lE~(1) [-'~ 3) 

Table 6. A comparison of the first-order and triple-dipole nonadditivities for hydrogen, helium 
and neon trimers in equilateral triangle configurations. The energies and the interatomie distance R 
are expressed in atomic units 

H3 He 3 Ne 3 
R ~0) rR 3) a w(3) r~ 3)~ 1~,(1) /"~ 3)d 1U(3) ~'~ 3)~ <1) f 

~ e x c h \ O ,  ~ddd k J, ~ e x e h \ a ,  ~ddd,~, Eexch(3, 3) E~3)a (3 , 3) e 

3.0 -2.306 (-2) 7.829 (-5) -4.720 (-3) 1.0 (-4) -2.155 (-2) 8.9 (-4) 
4.0 -3.835 (-3) 2.550 (-5) -1.930 (-4) 7.8 (-6) -6.970 (-4) 6.7 (-5) 
5.0 -6.914 (-4) 7.766 (-6) -6.403 (-6) 1.045 (-6) -2.057 (-5) 8.976 (-6) 
5.5 . . . . .  3.515 (-6) 3.807 (-6) 
6.0 -5.838 (-5) 2.236 (-6) -1.914 (-7) 2.026 (-7) -5.951 (-7) 1.740 (-6) 
7.0 -5.803 (-6) 6.643 (-7) -5.364 (-9) 5.060 (-8) -1.666 (-8) 4.344 (-7) 
8.0 -5.336 (-7) b 2.139(-7) -1 .484(-10)  1.521(-8) 

10.0 -3 .619( -9)  b 2.966 (-8) 

a Ref. [6], b Ref. [7], c Ref. [26] - nonexpanded triple-dipole energy, d Ref. [8], e calculated with C 9 
of Ref. [9], f Present work 

c a l c u l a t e d  in t h e  p r e v i o u s  s ec t i on  and  t h e  t r i p l e - d i p o l e  e n e r g y ,  Ea(3h(3, 3). T h e  

r e p o r t e d  v a l u e s  of  ~ddd]ET(3) \/''~J, 3) fo r  H 3 h a v e  b e e n  c a l c u l a t e d  by  O ' S h e a  a n d  M e a t h  

[26]  a n d  a l l ow  fo r  t h e  c h a r g e  o v e r l a p  effects .  F o r  He3  a n d  Ne3 t h e  t r i p l e - d i p o l e  

t e r m s  h a v e  b e e n  c a l c u l a t e d  in t h e  m u l t i p o l e  a p p r o x i m a t i o n  us ing  fo r  t h e  v a n  

d e r  W a a l s  coef f ic ien t s  C9 t h e  v a l u e s  of  T a n g  e t  al. [9]. A s imi la r  a p p r o x i m a t i o n  

fo r  t h e  t r i p l e - d i p o l e  e f fec t  fo r  H3 g ives  in t h e  r e g i o n  of  t h e  v a n  d e r  W a a l s  

m i n i m u m  resu l t s  in e r r o r  of  4 %  at  R = 8 a . u .  a n d  1 1 %  at R = 7 a . u .  Thus ,  it 

s e e m s  r e a s o n a b l e  to  a s s u m e  tha t  fo r  H e  3 and  Ne3 t h e  t r i p l e - d i p o l e  i n t e r a c t i o n  
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is highly overestimated only for R < 5 a.u. For these distances we report  only 
two figures of the approximate results, solely to illustrate the dominant role of 
E(I~L 3 . . . .  ( , 3 ) .  

Perusal of the results of Table 6 leads to the interesting conclusion that the 
absolute value of ~exch~J,~(1) ta 3) increases substantially slower than E ~ ( 3 ,  3) with 
increasing size of rare gas atoms in the trimer. For Ne3, within the whole 
investigated region, the former effect is about 3 times larger, whereas the latter 
about 9 times larger than in the case of He3 system. Another  important 

F(1) 3 IE '(3) /'R conclusion is that the region where ~ . . . .  ( , 3) and -~ada~J, 3) are of comparable 
magnitude is, for all the investigated systems, the van der Waals minimum 
region. In our comparison we have neglected the higher terms in the multipole 
expansion of E(3)(3, 3) as well as the fourth- and higher-order three-body 
dispersion terms. It has been argued, however, that their contribution is 
substantially smaller than ~-'dddk~',lE'(3) ('1 3), due to a fortuitous cancellation of repul- 
sive and attractive effects [4]. On the other  hand, we also expect, on the basis 
of the H 3 example, that the exchange-dispersion nonadditive effect does not 
modify the total exchange effect considerably: at R = 8 a.u. it has been esti- 
mated to be about 10 times smaller than (1) Eexcu(3, 3) [7]. In addition a cancella- 
tion of the induction-type effects, disregarded in our treatment,  can be 
expected. Finally, on the basis of calculations for helium dimer [27] the 
intraatomic electron correlation effects are supposed to be not very important. 

The above analysis suggests that the evaluation of ~exch\O~'(1)/'-~, 3), and E (3)dda (3, 3) 
can provide us with reliable information about the magnitude of the total 
nonadditivity of interaction within a wide range of interatomic distances. The 
neglected contributions may be, however, essentially more important at the 
distances where ~(a)ex~ht tao, 3) and ~ddd12'(3) \J["2l, 3) nearly cancel each other. This fact 
should be borne in mind in studies of the nodal structure [28] of the total 
nonadditive effect. 
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